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PREFACE

This report is the third technical report to be issued under Contract NASw-905
and is devoted specifically to documentation of some additional theoretical results
on probabilistic modeling obtained in the basic research effort under the contract.
The basic research studies consist mainly of investigations in curve, level and
zero crossings by certain normal stochastic processes (both stationary and non-
stationary). Such investigations provide measures of the quality of performance
and the reliability of certain complex systems.

The text of this report is devoted primarily to the rigorous mathematical
development of an expression for the variance of the number of zeros of a station-
ary random process. The major theoretical results of the study are stated in the
first section as a theorem. From the practical viewpoint of computing the desired
variance quantity, equation 1.8 is also presented in the first section. The
remaining sections are devoted exclusively to the mathematical rigor for proof of

the theorem,
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The Variance of the Number of Zeros of Stationary Normal Processes

1. Introduction
Let [x(t), t € [0,T]} be a real separable stationary normal stochastic process
with E[x(t)] = 0, Var[x(t)] = 1, with covariance function r(t) = £[x(0)x(t)] and
corresponding (integrated) spectrum F(A), that is,
@
(1.1) r(t) = [ cosit dF(Q) .
o
We consider a random variable Nx defined as the number of zeros of x(t) on the
interval [0,T]. The importance of Nx and its statistical properties in reliability
applications has been discussed previously in the reports of Cramér (1962) and
Leadbetter (1963). The mean value of Nx is known even for a large class of non

stationary normal process (Leadbetter and Cryer (1964)), the result for the

(stationary) case at hand being

_ 1/2
(1.2) S[Nx] =T 12 I
where lz is the second spectral moment, i.e.,

[s o)
X, = f 32 aFQd) .

o

Recently, Ylvisaker (1963) has shown that (1.2) is valid under certain weak
conditions even if 12 = 4+00. We note here that kz < 400 is equivalent to r(t)
having a (finite) second derivative at the origin.

Higher moments of Nx have received much less attention in the literature. The
formula for‘€[N§] is implicit (under certain conditions) in the work of Rice (1944)

and is given for a particular normal process by Steinberg, et al (1955). The first

derivation for a somewhat general situation seems to occur in a footnote of a paper




by Rozanov and Volkonskii (1961) where it is assumed that the sixth spectral moment
is finite (or, equivalently, that r(t) has a sixth derivative at the origin).,

The purpose of this report is to derive the formula for €[Ni] under quite
weak conditions, given in the following result.

Theorem: Suppose that the covariance function r(t) has a second derivative

r"(t) which, for all sufficiently small 1, satisfies

(1.4) kz + (1) € ¥(7) ,
where ¥(t)/t is integrable over [0,T] and ¥(t) decreases monotonely as 1 decreases
to zero.

Suppose further that the spectral distribution F(A) has a continuous

component. Then we have

2 TT o 0o
(1.5) EIN.1 = €[N ] + [ [ asae [ [ |xy] p,_.(0,0,x,y)dxdy ,
o0 -00 -

where pt_s(u,v,x,y) is the four-variate normal density for the variables
x(t), x(s), x"(t), x'(s), and where x'(t), x'(s) denote the (quadratic mean) deri-
vatives of x(t) at t and s, respectively.

The statement of the theorem as it stands is convenient for theoretical purposes.
From a practical (computational) standpoint however, the right side of (1.5) may be

made somewhat more explicit. Specifically we may write

(1.6) pt_s(u,v,x,y) = (21r)-2 ,Zl-l/z exp [-(u,v,x,y) Z-l (u,v,x,y)'/2] .
where £ = %(t) is given as
r- 1 r(t) 0 -r'(t) ]
(1) 1 ' (7) 0
L o= , T = t-s
0 r' (1) XZ -r"(1)
|-z (1) 0 -r'(7) A,




Equation (1.5) may then be evaluated (see, for example Rice (1944) or Steinberg,

et al (1955)) to yield

2 \1/2

2) (1-r2¢1)) " 2[14Atan " 1A]dr,

T
(1.8) €1 = T 3, 2 m 4 /) ) (5 -
(o]

2

. . _ 2 -1/2
where Zij is the (i,j) cofactor of £ and A = 234(233 234)

, the dependence of
Zij and A on T = t-s being suppressed.

The proof of the theorem follows from a series of lemmas given in the next
three sections.
2. The process {yn(t)}.

There is no loss of generality in taking T = 1 and we do so. We use the method
of Bulinskaya (1961) in approximating the x(t)-process by a sequence of processes
defined as follows:

For each positive integer n and each t € [0,1], let k = kn(t) be the unique

integer such that k/2n <t< (k+1)/2n, (so that 0 < k g_z“). Then define

(2.1) y (£ = x(k/2%) + 27(e-k/2M) [x((+1)/2%) - x(k/2™)],

that is, [yn(t): 0 < t <1} is a new process coinciding with x(t) at points of the
form k/2n, and consisting of straight line segments between such points.

Let N denote the number of zeros of the yn(t)- process for 0 ¢ t < 1. By
n
— x'
n
Ylvisaker (private communication) has shown that the set of sample functions

definition of yn(t), clearly Ny <N

of x(t) which are tangent to the axis somewhere has probability zero. Hence it is

easily seen that N —> Nx’ with probability one, as n —> oo. Hence also
¥a
Ni — Ni, a.s., and by monotone convergence we have
n




Lemma 2.1: S[Ni ] — S[Ni] ,as n—> m.
n

To evaluate S[Ni ] we use a sequence of functions "approaching a Dirac delta
n
function, " viz.,

Definition: A sequence {Bm(x)} of non negative integrable functions will be

called a d-function sequence if

i) f am(x) dx = 1 for all m = 1,2,...

(ii) / Sm(x) dx —> 1 as m —> oo for any ¢ > 0,
-€

We now evaluate N2 analytically.
n

Lemma 2.2: 1If {Sm(x)} is any d-function sequence, then, with probability one,

we have
2 11
(2.3) Ny = lm £ £ 8 [y ()] 8 [y (s)1]yi(t)y!(s) [dsat
and
11
(2.4) £ £ 8 [y ()18 [y ()1]y!()y'(s)|dsat < 2°*  , all m.

Proof: The proof follows directly from Lemma 2 of Leadbetter and Cryer (1964)

which states that

1
N,o=  lin [ 8 [y (0)]ly] () [de
n m —>00 0
(2.5) and
1
[ 8,y (0)1]y1(e) ae < 2°

o

The inequality (2.4) allows us to apply the dominated convergence theorem to

(2.3) yielding




Lemma 2.3:

11 ,
(2.6) é:[Ni, 1= lim [ [ &5 [y (£)] Sm[yn(S)]Iyt'l(t) yr'l(S)Udsdt ,
n 00 0 O

(where the interchange of order of integration is permitted by Fubini's theorem for

positive functions).

3. Further preliminary lemmas.

To evaluate the right side of (2.6) we consider the t,s integration over four

disjoint regions. Let Ik denote the interval [k/2n, (k+1)/2n). For each positive

integer n and each € > 0 we define for 0 < t, s < 1 the sets

S, = {(t,s): |t-s| < €}

S, = {(t,s): |t-s| > e, t and s both in 1, for some k}

S3 = {(t,s): |t-s| > e, for some k, t € I and s € Ik+1 or s € Ik and t € 1
Sl& = {(t,s) otherwise, i.e., t and s in separated intervals]

The right side of (2.6) can now be written as

(3.1)  lim lm [Jf + [f+ []+ []] €8 Iy ()] & [y ()1]y}(t)y}(s)[dsat

e—>0 m>m S1 82 83 Sa

and we consider the integrations over the four regions separately.

Lemma 3.1:
t 1 =
(3.2) lim lim [f Sm[yn(t)] Sm[yn(s)]|yn(t)yn(s)|dsdt Ny , @.8. ,
€e—>0 m—>00 Sl n
and hence
(3.3) lim lim [f E‘,{Sm[yn(t)] Sm[yn(s)]]yr'l(t)yt'l(s)l}dsdt = &[N 1.
e—>o m—>00 Sl In
. _ n
Proof: Put o = k/2°. let ts tz,...,tN be the zeros of yn(t) on [0,1].
Then, with probability one, €, = -;'minlti-k/an, where the minimum is taken over

i=1,...,N and k-——O,l,...,Zn, is a positive number.

kt+l

}



Thus the left side of (3.2) is less than or equal to

1 % | | 2
1i by S} (t '(t)|dt
m E [ ({‘k MEACO A ]
i vy (©lae . [ ly.(o)]
+ lim 2 = [ 8 [y (8)]|y (£)|dt . & [y (s)1ly (s)|ds
) k=1 o mon n ak-eom n n
"1 Yn () 2
= lim s [ f Bm(x)dx]
m—>00 k=o yn(ak)
Zn-l yn(ak+€o) yn(ak)
+ lim 2 = | f Sm(x)dx|.l / Sm(u)dul
>0 k=1 yn(ak) yn(ak-eo)

The first term is N as in the proof of lemma 2.2 and the second term is zero
n
since, by definition of €5 yn(ak+€°) and yn(ak) are of the same sign and similarly

yn(ak-eo) and yn(ak) are of the same sign. Hence the left side of (3.2) is less
than or equal to N_ , a.s.

n
Further, if € < € then the left side of (3.2) is not less than

t,+€ t, te

N f i
lim 2 f [ 8 Iy ()18 _[(y (s)1]y' (t)y!(s) |dsdt
—>o i=1 ;€ ¢ m-n m! Vp 'S ]!yn Jp's |ds
N yn(ti+€) 9
= lim [ ! 8 (u)du]

m—>00 i=1 y (t, -€)

= N_, as in the proof of lemma 2.2.

Yn

Thus the equality in (3.2) is proved.
Equation (3.3) follows from (3.2) and (2.4) by applying the dominated con-
vergence theorem.

The next result will be needed later.




Lemma 3.2: As m—>o0 the following limits hold uniformly for 0 < t,s < 1.

1) covly (t), y (s)] —> x(t-s),
(ii) cov[y;(t), yn(s)] —> r'(t-s), and

(iii)  covlyl(t), y!(s)] —> -r"(t-s) .

Proof: From (2.1), the definition of yn(t), we have
covy (t), y (s)]

(3.5) = [(1-2"t+k) (1-2"s+0)+ (2 e -k) (2%s-2) ] r((k-2)/2")
+(1-2"e4Kk) (2%s-2) r((k-4-1)/2™) + (1-2"s+2) (2"t-k) r((k-£4+1)/2")

where k=kn(t) and {;kn(s).

Expanding the r(.) terms on the right side of (3.5) into two term Taylor

expansions, about the point t-s, we obtain

cov{yn(t),yn(S)] - r(t-s)

=[1-2nt+k)(l-2ns+{)+(2ns-{)(2nt-k)] r'(On) [klf - (t-9)]
2

+(1-2+0) (2% -0) £t (P ) [ | (tos))
n 2n
+ (1-2%+£) (2Pt-k) r'(v) EEL _ (e8]
n 2n
where 0< It-s-O l < | ket t+s| < 227" s
n 2n
(3.6) 0 < lt-s-nnl < | :Eifil - t+s| < 3.2,
0< Je-s-¥ | < | k:ftl - t+s| < 3.27"




By the definition of k and 4 the quantities l1-2nt+k|, |1-2ns+&|, lznt-kl, and

IZns-Ll are all bounded by 1, hence

|eovly (£),y ()] - r(t-s)| < (4]x" (8 ) [+3[r" (@ ) [+3]zr (¥ ) ]) 27",

Since r'(71) is uniformly continuous and bounded for O < 7 < 1 the required uniform
limit (i) is obtained.
Again by the definition of yn(t) we have

cov[y’(t), y_(s)]
= 27 (1-2"s+2) [r((k-4+1)/2™) - r((k-2)/2™)]

+  (2%s-0) [r((k-2)/2") - r((k-2-1)/2™)1)

Using three term expansions we find

cov[y;(t), yn(s)] - r'(t-s)

= 22N I ) (R ey - pt(e ) (K - )’
2 2

+ (2%s-2) ") EE L e)? ey L L owe)?p
n’ton n o0
where the (new) Qn, ¢nf Yn satisfy (3.6). Hence again

! - 1 - " ] " -n
covlyf(t), vy (s)] - x'(t-s)| < (3[x"(g ) I+ale"(o ) [+3]x"(¥ D ])2
and since r"(1) is also uniformly continuous and bounded for 0 < T < 1 the desired
result (ii) holds.

Lastly we have

2 220 ((k-2)/2%) - £((k-2-1)/2%) - r((k-4+1)/2™)]

covly!(t), y;(s)]

-‘]2‘[r"(t-s+hn-9n) + x"(t-sth )]

where n o= K& t4s, 0< 0 <27, and 0< ¥ < 27",
noo,n n n




Both hn-Qn and hn+9n tend uniformly to zero as n—>00 and, by the uniform continuity
of r"(1), (iii) is proved.

With the help of this lemma we may obtain

Lemma 3.3: lim . £f (s [y (t)] Bm[yn(s)]lyr’l(t)yl'l(s)l]dsdt =0
> 2
2"-1 2"-1
Proof: S, = {(t,s): It-sl > €, 3 < t,s< kﬂ'-}= W, , (say).
2 g 2 2" %=Jo k

For (t,s) € Wk, yn(t), yn(s), y;(t), y;(s) are linearly related so that we have only

two non degenerate random variables, and thus

Q0
(3.7) &3 Iy (£)] B [y (s)1]y2(e)y!(s) [} = I 8,08, NED? p | (x,y)axdy

where pn’t’s(x,y) is the bivariate.normal density for (yn(t), yn(s)). Taking

n__ -m)?/2

5m(x) = (2ﬂ)1/2 and putting mx = u, my = v in (3.7) yields
o 2 2 —~ 2
(3.8) = {ie (e +v/2 2y, Py ¢, (u/m,v/m)dudy
Now Pyt S(x,y) = (27r)-1 D-ll2 exp[-(Cx2 - 2Bxy + Ayz)/ZD]
where A= An(t) = var[yn(t)], C= Cn(s) = var[yn(s)],
B = Bn(t,s) = cov[yn(t),yn(s)], D= Dn(t,s) = AC-B2

By lemma 3.2 these moments tend uniformly to the corresponding moments of the x(t)
process. In particular

Dn(t,s) —_— 1-r2(t-s).

2 © ®
Now 1-t%(t) = [ (l-cosAt)dF(Q) - [ (l4cosiT)dF(Q) > O.
o o

Equality holds only if 1 = 4cosAt except for a A-set of dF()) measure zero. But for

7#0 only countably many A can satisfy 1 = +cosAt and hence, since F(A) has a



continuous component, the strict inequality holds. Further r(t) being continuous
implies that 1-r2(t-s) is bounded away from zero when |t-s| > € > 0. Hence,
for sufficiently large n, the integrand of (3.8) is dominated by
2, 2
const e-z(u-v)2 e-'(u w2,

which is integrable in u and v and bounded (constant) in t and s. Hence the integral

of (3.7) over 82 is dominated by a constant multiplied by 1/m which yields the proof

of the lemma.

Lemma 3.4: 1im lim lim [ &5 [y (£)]1 & [y (s)1]y'(t)y'(s)|}dsdt = 0.
n—>mw €—>0 mr—>o00 S men mn n n

3
Proof: We can write
2%-2 K K+l K+2
S, = \UJ lGs,t): Je=s|2e, == <t< =~ <s<—} U
3 = n n n
k=o 2 2 2
2%-2 k k+1 k+2
\J ((s,t): ft-s] 26, ——<s <™ <<=
K=0 2 2 2
o2 )
= W, U W » (say).
VR

For (t,s) ¢ Wk (or WL) there are only three non degenerate random variables among

the set yn(t), yn(s), y;(t), y;(s). Further by stationarity

[ 1o, Iy (013 [y ()1]yi(t)yl(s) |} dsde

Wy

= fw [ ele [y ()13 [y ()1l (t)y}(s) [} dsde
]

and similarly for WL and W;. Hence the lemma will be proved if we show

2-n+1 z-n
(3.9) 1lim lim lim 2% ) [ & [y ()15 [y (s)]ly;(t)y;(s)l}dtds = 0.
n—>0o >0 m—om z-n 0 non mon
s-t > €

10



Define x = x(2-n), X = x(0), and x, = x(?.-n+1) and for convenience let

tt =2 - t, s'=s -2, 'l'henfor0_<_t<2-ngs<2-n+1 we have

n n n n
yn(t) = 2 t'x1 + (1 -2 t')xo s yn(s) = 2 s'x2 + (1 -2 s')xo

Taking again 8m(x) = m(Zrt)-]'/2 exp(-m2x2/2) the integrations in (3.9) may be

written

° ® 2, -1 2 n 2, ..n n 2
-f [ dtds [[] 2 m"(2%) “expl- —2—{[2 tx; + (1-2t)x ] +[27sx, + (1-27s)x ] 11

o ,-n -a9
2

z-n

(3.10) I(xl-xo) (xz-xo) |pn(:-:o,x1,xz)dxc’dxldx2 .

where pn(xo’xl’XZ) is the tri-variate normal density for x(2-n), x(0), x(Z-n‘H'

)s
and we omit the primes on t and s in the remainder of this proof.

We can write the triple integral in (3.10) as the sum of six such integrals

over the following regions:

IN
W
»

1P *12%=%
RZ: xogxlgxz
R3 X, < ¥ < X,
R4: ngxogxl
RS: xogngxl
R6: X < ng_ X,

From symmetry arguments for % and x, we need consider only regions Rl, R2 and

Since in region R1 we have
2 2 n n 2, n n 2
x] +x < [2 tx1+(1—2 t)xo] +[2s x2+(1—2 s)xo]

the contribution to (3.10) from region Rl is not greater than

11




2n 2+ 2,2 2
2" m fff e-m (x1+xo)/2
=00

27 I(xo-xl)(xo-xz)lpn(xo,xl,xz)dxodxldx2

2n o0 2. 2
(3.11) =2 gy etutv/2
-00

= om I(U"V)(V/m-xz)an(U/m,v/m,xz)ldudvdx2

In more detail we have

P (%, ,%,) = (Zn)-3/2|Vn|-1/2exp[-%(xo,xl,xz)V;l(xo,xl,xz)']
where — . r(z_n) r(z_n) -
v, = r(2™™) 1 r(2-n+1)
r2™  r@™h 1

Calculation shown that

-n+1

v | = n-x@™hH-2r? @™ + x@™!

)]

By the proof of lemma 3.3 the first factor is strictly positive. Putting 2™ =«

the second factor may be written
e ] 0o

1-2[ J cos)x dF()\)]2 + [ cos 22 df(Q)
o o

00 2 ®
2{[ cos“2ax dF(Q) - [/ cosix dF(A))
o )

2y

@ 2
2{[ [cosaa - r(@)]° dF ()}
)

This can be zero only if cosMX = r(@) a.e. (F(A)) which is impossible since F(2)
has a continuous component. Therefore Ian > 0 all n. Hence the integrand of

(3.11) is dominated by
-2y /2
const e '(U-V)(V'Xz)l

(using lemma A.1) which is integrable in u,v,x, and const in t and s.

12




Hence the contribution to (3.10) over regions Ry and R4 is dominated by
const m-1 which tends to zero as m —>m .

For region R2 we note that |[t-s| > € is equivalent to t' + s' > € and further

{(t,s): t+s>€lC ((t,8): t>¢e,8> 0l ((t,s): s>¢€, t> 0}

=WUW! , (say).

For (s,t) € W and X s X15 X, in region R2 we have
2

n_ . n 2 n n 2 n n 2
[e 2 x1+(1+e2 )xo] + x < [2 tx1+(1-2 t)xo] + [2 sx2+(1-2 s)xo]

An analogous inequality holds for (s,t) € W'. Now

2n 2
Zan fff exp{-— [x 2 ce2™x +(1+€2 )x ) ]}I(x ;) (x - 2)|pn(xo,x1,x2)dxodx1dx2
2
ﬁ?ff {-Lru2+ (2™ (1re2%)u) 221 | |dudva
< - exp -z[u +(e2 v+ (142 )u) +x2] (u-v)(u/m-xz) udvdx,,

This integrand, which tends to zero as m—>m , is dominated by the integrable

(in u,v,x,,t,s) function

2,
const exp{ -%[u2+(62nv+(1+62n)u)2+x§]] ’(u-v) (u-x2 l

and hence again the contribution to (3.10) over R2 (and RS) goes to zero like m

2, 2 n n 2 n n 2

1-!-':4:2 < [2 tx1+(1-2 t)xol + ]2 sx2+(1-2 s)xo]

In region R3 X

(x g)] |(Xo-x1)(x°-x2) h)n(xo,xl,xz)dxodxldx2 dsdt
. f?f exp[-L(uZv?) ]| (x_-u/m)(x_-v/m) |p_(k_,u/m,v/m)dx_dudv
2% - P 2 o o pn o’ ’ o

13



As in the previous cases, by dominated convergence, this tends to (as m—>o0)

1 2 1,2, 2. .2
T {i{ exp[~5(u + )1 x pn(xo,0,0)dudvdxo
© ,
= [ X pn(xo,O,O)dxo

=00

From the explicit form of pn(xo,xl,xz) this can be written

o0
2032y V2 [ x? expl-(1-r22 ™ a2/ (2]v_|)1ax
-00
(3.12) = Klvn[[l-r(Z'“+1)]'3/2 >

where K is a constant not depending on n.

We find that as n—>o00 Ian = 0(2-4n) , since r"(7) exists and is continuous
at 1=0.
Further
12227y o 72200y 4 6(2727), where 0 < 0 < 277D,
Hence
anan [1_r2(2-n+1)]-3/2
= o0 0(2-4n)/[_2-2n+2rn(g)+o(2-2n)]3/2

3/2

o(1)/[-r"(8)+o(1)]

—> 0 as n > ® .

Therefore the contribution to (3.9) over regions R3 and R6 is zero proving the

desired result.

Before considering the t,s region S, we need to ensure that the joint distri-

4
bution of yn(t), yn(s), y;(t), y;(s) is non singular for (t,s) € 84. This result

is provided by the next lemma.

14




Lemma 3.5: For (t,s,) € 84 the covariance matrix zn(t,s) of

yn(t), yn(s), yt"(t), y!'l(s) is non-singular for every n.

Proof: From the definition of the yn(t) process it is easy to see that for
(t,s) € 54 zn(t,s) is non-singular if the covariance matrix of x(0), x(Z-n),
x(j2-n) ,x((j+1)2-n) is non-singular for j > 1. Writing r for r(mZ-n) this

covariance matrix is

1 r1 rj rj+1
r 1 T, r,
(3.13) 1 -t
rJ rj_1 1 r1
T. r r 1
jHl j 1 _

Some calculation shows that the determinant of (3.13) can be written as

(3.14) Ll (- y,)) - (rl-rj)Z] [(bbry ) (Br,) - (r1+rj)2] )

-n
Consider the first factor. We can write (putting 2 = =q)

2 ® . 2
(rl-rj) = [[ (cosaX -~ cosajr) dF(N)]
o
@© 2
=[2 [ (sina (#FDA/2)(sina (j-1)A/2) dF(Q)]
)
(3.15) ® ) ® )
< [ 2sin"a(HDA/2 dFQ) - [ 2 sin"a(j-1A/2 dFQQ)
) o
© ®
= [ fl-cosa (j+DA]JaF(A) - [ R-cosa(j-rJIFQ)
) 0
= (1 - rj+1)(1 - rj-l) .

The inequality (3.15) is Schwamz' inequality. Equality holds only if

(3.16) sin@ (j-1)A /2 = const sina (j+1)2/2

15



except on a A-set of F(LA) measure zero. For @ and j > 1 fixed (3.16) can be
satisfied for only countably many A values. Hence, since F(L) contains a continuous
component, the inequality at (3.15) is strict and so the first factor of (3.14) is
strictly positive. An analogous argument shows that the second factor is strictly
positive and hence the lemma.

Now we can show

Lemma 3.6:

2
(3.17) S[Ny

00
1=¢EIN. 1+ [ [dsdt [[ Ixylp (0,0,x,y)dxdy + o(l), as n—m>o,
yn S’k -00

4

n,t,s
n 3 3

where pn’t,s(u,v,x,y) is the four-variate normal density for yn(t), yn(s), y;(t),

*

. .
y!'(s), and §, = lim §,,
n ’ 4 c—>0 4

Proof: We first appeal to lemma 2.3 and equation (3.1). The term €[Ny ] in (3.17)
n

is given by lemma 3.1, while the o(l) term follows from lemmas 3.3 and 3.4. Hence

(3.17) will hold if we can show

(3.18) lim  lim [ [ &{8_[y (£)18_[y_(s)1y1(£)y!(s) [}dsdt

€e—>0 m—>00 S4

[o0]
= f*f dsdt ff IxYlpn,t’s(O’osst)dXdy'
S4 -

Explicitly we have

-2 -1/2 -1
P, t’s(u,v,x,y) = (2n) |2n| / exp[-(u,v,x,y)Z " (u,v,x,y)"'/2]

where = = I (t,s) = cov(y (t), ¥,(8),y (t),y! (s)).

1/2 2

Taking again Sm(x) = m(2n) " x2/2), we may write the expectation in

exp(-m

(3.18) as

00
I175 @0 20?121 72 [xy lexp [ (mPuPamPv (v, %, )5 (4, v,%,5) ) /2] dudvdxdy
-00

vy -3 (-1/2 2, 2 -1
(3.19) = [[[] (27) 'an |xy lexp[-(u+v +(u/m,v/m,x,y)Zn (u/m,v/m,x,y)*)/2]dudvdxdy.
-00

16



By lemma 3.5 we have that lZn(t,s)I is bounded away from zero uniformly

for (t,s) € S Further an application of lemma A.l1 show that

4"

exp ['(u:v,x9y) z;l (u,v,x,y)'/Z]

< exp [-(x, A" (x,9)1/2]

where A is the 2 x 2 covariance matrix of y;(t), y&(s). As a corollary to lemma

3.5 A is non-singular for (t,s) € S, and indeed by the calculations of lemma 3.2

4
the elements of A.1 are bounded functions of t and s, the diagonal elements being
bounded away from zero for (t,s) € S4.

Hence, by dominated convergence, the limit as m — @ of (3.19) may be

taken under the integrations to yield

@®
lim J [asac [ [ |xylp_ . .(€0,0,x,y)dxdy
e —> 0 S - T
4
o 0]
= [ Jasat [ [ |xylp . .(0,0,x,y)dxdy .
* - sty
Sy

the last expression being justified by monotone convergence since S4 increases

*
to S4 as € —> 0.

4. The remaining limit

To evaluate the limit of (3.20) as n —> o0 we again appeal to the dominated

00
convergence theorem. That [f Ixylpn ¢ S(O,O,x,y)dxdy can be dominated by a function
-m ? 3

of t and s which is integrable over 0 < t, s, < 1 is provided by the following

lemmas.

17




Lemma 4.1:

00
1/2 (1),3/2
(4.1) [é; xylp, ¢ o€0,0,%,y)dxdy < (o33 o)) 7/ C2x [0
L1 @) 0
where £ _(t,s) = . , i.e., X is the upper left 2 x 2 corner of
n Z(2) Z(3)

Zn(t,s) (defined at (3.18)), and Uij is the (i,j) cofactor of Zn(t,s).

B B
-1
Proof: Partition Zn into 2 x 2 sub-matrices as

B! B
then 2 3

* -2 o-1/2 [ F 1
(4.2)  [f lxylp, . [(0,0,x,y)dxdy = (21) " |Z| JT |xylexp[-5(x,7)B,(x,y) " ]dxdy
-00 b H -00

By Schwarz' inequality this is less than or equal to
y q q

e o]
otz 7200 2 s, V2 11 exp(-20x,y)By(x,y) Ddxay] 2
-00

o
(20 2[5, M2 1S y? exp(R0x, B, (x,y) axdy] M

-

(4.3) = oMz T2, T e, 8 Th,,1

-1

where (B;l)ij represents the (i,j) element of B3

Now [B3| = [Z(l)[/|2n| (see Anderson (1958) p. 42 for example) and so
[}Zn|'|B3']_1/2 = ]Z(l)|-l/2. Further

933 93

_ -1
B = Iz [
34 44

and therefore

18



o -0 o -
-1 -1 33 34 1),-1 33 34
R A RN = =]
-g o -0 o
43 44 43 44
-1 1),-1 -1 1),-1 X .
Hence (B3 )11 = IZ( I O3 and (B3 Y = |Z( )I Oty Putting these values into

(4.3) yields the desired result,

In order to dominate the right side of (4.1) by an integrable function of t
and s for 0 < t, s < 1 we need to consider the behavior of the quantities T332 Tpy
and lZ(l)l for v = t-s near zero. The required results are provided in the next

two lemmas.

*
lemma 4.2: Let X.n = Xh(t’s) be the indicator function for the set SA’ i.e.,

1 (t,s) € SZ
X =
0 (t,s) ¢ SZ

Then

X (t,s)- lz(l)l'l < [1212 + o(TZ)]'1

as T = t-s —> 0 and the o-term is uniform in n.

% -
Proof: We note that for (t,s) ¢ S4 we have |t-s] > 2 % This is the only property

*
of S4 which is used here.

For convenience of proof in this and the following lemma we let

A F B G
D E
(4.5) £(t,s)= | ¥ i ,
B H C J
G H J C
n n

n=2t -~ kn(t), A=2's - kn(s) ,

and for integer m, r, = r(m/2"). With this notation we have Z(l) = AD - F? where

A= 1—2p(1-p)(1-r1), D= 1-2k(1-l)(1-r1) ,

19



and F = [(L-p)(1-)) + wAlr, + (1-u)>\rj_1 + (l-l)urjﬂ, where j = k (t) - k (s).

-2

Now r; = 1-2 n-1 (,-¢) where ¢ = 2, + r"(el), 0<6, <2 , and

2 1

-2n-1 2 1, _ " -2n-1_2
r = 1-x2 2 m~ + Ym 2" (m= j-1, j, j¥l) , where Ym = [kz + r (gm)]z m

with 0< £ < 2 'm.
Thus

AD

(1-20(1-0 12727 Q=) L2010 277 -0 1)

- - 2
1-[n(1-w) + M(1-0)] 27770=0) + A (1-p) (1-2) 27%7(a,-0)
By definition 0 < p, A< 1 for all t,s and n. Further ¢ = A, + r"(Gl) g_W(Ql)

where ¥ is given by the theorem. By assumption ¥(t) decreases as T decreases to

-n
zero. Thus, for 1> 2 -,

[u(l-u) + A(1-2)] 2-2n ¢ < const 12 Y(Gl) < const TZY(T)
and 2-4n(k2-¢)2 < const TA. Hence for 7 2_2-n we have
-2n 3
AD = 1 - [u(l-p) + A(1-2)] 2 xz + o(t7) , as 1T —> 0,

3, . . .
where o(t”) is uniform in n.

Now

2n

F=1- [j2+2j(p-)\)+11+}\—2|.1)\])\22- 1oy ra-na-n + HATY, /2

+ (1-p)X v, 2+ (L-0u ¥,

. 412

< const TZY(g ) < const TZY(ZT)

-n -n,,
For 1 > 2  we have 2 (j+l) € 21 and thus (l-X)ij+1 < 41

n

and similarly for the other Ym terms. Hence, subject to 7 2_2- s

2

F2 = 1 - [32425(u-2)tudd-200] A, 272

oo 0(12)

2y . . .
where o(717) is uniform in n.

Therefore

Xn(t,s)!ZI(ll)(t,s) |'1 [(Giru-2)2 )\22-2n + o)t

IN

T2
2

[ + 0(12)]-1 , astT—>0

b

20



where 0(12) is uniform in n as required.

Lemma 4.3:

(4.6) Xa(t,s) (033 s

)1/2 <K 2 ¥(217) + 0(13) , as 1T™> 0,

where the o-term is uniform in n and K is a constant.

Proof: In the notation or (4.5) we can write

6.7

Oyy = C(AD-F2) + E(2FG-AE) - DG2 ,

and we consider the three terms separately.

From the proof of lemma (4.2) we have

where 0(13) is uniform in n. Further C = 2

Xn-¢ < ¥(1)

(4.8)

For the

so that

Also

and hence

X_-2FG = 2“[x22'2“(2j+2u-1) + (2u-1Y 4 Q) ¥

X_* (aD-F?) < Gh-n?y, 2720 4 k(@20 + o)

2n+1(l-rl) = lz-t and hence since

-2

X -CaD-F*) < (-0 22 2720 4k B¥(21) + o(rY)

second term we find

E = z“m-nu-rl) = 2'“(x-1/2)(x2-¢)

AE = 277(0-1/2)(2,-0) - 271w (A-1/2) (2, 0)

(]
il

AW (1)) + ulryor )]

_ n-1 -2n,,. _
= 2 [k22 (2j+2u-1) + (2u 1)‘l’j_1 uwj+1]

1~ Wl

2n

-G R23 uhe-200n,), 27207 4 o(e?))

_ oD -2n,,. - _ - 3
= 2 [lz 2 7(2j+2p-1) + (2u 1)‘{’j + (1 “)Yj-l ij+1 + o(t7)]

with 0(13) uniform in n.
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The second term is therefore

2

(4.9) X -E(2FG-AE) = 1,

272 (A-1/2) (2542u-1-1/2) + 2-2n¢[(2x2+¢)-X2(2j+2p-1)]

+ (>\-1/2)(>\2-¢)[(2u-1)‘1’j + (l-u)‘l’j_1 S ETO N o(x7)

3, . . .
where o(t”) is uniform in n.
For the last term we have

D = 1-20(1-3)(1-x) = 1-A(1-1) z‘zn(xz-w)

For G we expand rj_1 and r,

3+1 around j, i.e.,

- - =11_ -2n-1 4 -n s -n,
rj_l l'j 2 rj + 2 r (51) s 2 (J 1) < 2 ] ’
_ -n_, -2n-1 _u -n, -n,, .
and rj+l-—rj+2 rj+2 (gD, 2 < E,<2 (D)
then
G =

A (CEDICHPE DI T I

-x 4+ 27PN 1) - e

327%"(e,), 0< 8y < 320, yields

Now writing r!
J

G

2, (hum1/2) - 3270+ (L2 ey -2 e,

where ¢i = kz + r"(gi) , 1i=1,2,3.
Hence
6% > 277 a2 (he-1/2)? + 27PN (e 1/2) 250, + (L-w)o) - uoy]

and therefore

(4.10) -x De? ¢ -272M2(phu-1/2)7 - 27PN, (hum1/2) [-230 H(1-w)0, 0, ] + o(xY),

as Tt —>0 ,

4n 2 -4nj2¢

where 0(13) is again uniform in n. The 0(13) comes from terms like 2 @ j°, 2

4

and 2~ nj¢1 which are all dominated by const. 14 if t 2_2—n.

22
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If we combine (4.8), (4.9), and (4.10) as required in (4.7) we find that the
terms not multiplied by ¢i or Yi, i.e., the first term in each case, all cancel.

From (4.9) the terms that remain are like
2720 = 27201, + 26 and ¥, = w2 DD, + T80

which subject to 7 le-n’ are all dominated in absolute value by const. TZY(ZT).

Similarly the corresponding terms in (4.10) are like 2-2n j2 0q which is also

dominated by const. TZY(ZT). Hence in combining these results we have that

(4.11) <K 12 Y(2t) + 0(13) s as 1T —>20 s

933

where 0(13) is uniform in n, and K is a constant. From the definition of Oq3 and O

we see that they differ only in that t and s are interchanged. Thus the bound

given in (4.11) will also hold for o,, which yields the proof of the lemma.

44

Proof of the theorem: By lemmas 4.2 and 4.3 we have

1/2 (1)|3/2 2 3/2

Xn(t,s)(c /'Z < [K 72 Y(2t) + 0(13)]/[l ° + 0(12)]

33 %44)

3/2

[K¥(21)/7 + o(l)]/[)\2 + o(1)]

Hence

(4.12) X_(t,8) (o V21232 ok vnyr + x

33 44 2

where K1 and K2 are (absolute) constants. In terms of Xn equation (3.17) may be

written

(4.13) ern 1 = €N 1+ f f X (t,s) fflxylp ,6(0,0,%,y)dxdydsdt + o(1)
n o0 -0

as n —> ®,
By lemma 4.1 and inequality (4.12) the integrand of the t,s integration is dominated

by X, ¥Y(2t)/t + K2 which, by the assumptions of the theorem on ¥, is integrable for

23



0

IN

T < 1. Hence we may take the limit of both sides of (4.13) as n —> @ to

obtain (using lemma 2.1).

11 ®
(4.14) 8[N§1 = €[N ] + [ dsdt [[|xy| p___(0,0,x,y) dxdy
[e]e] -®

the interchange of the limit and the x,y integration being justified by the explicit

form given in (1.8) and by lemma (3.2). This is the desired result.
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Appendix

Lemma A.1: If x =(x1,...,xn), y= (yn+1,...,ym) are real row vectors and A is

an mxm symmetric positive definite matrix then

-1 -1
(A.1) min[(x,7) A "(x,31)'] = 34,7y’ ,
p.3
5 B
where A3 is obtained by partitioning as A = corresponding to the
Al A
2 3
dimensions of x and y.
-1 BB
Proof: Let A = also be partitioned as s then
1
P, By

@A @y = xPyx' + 2xP,y" + yP.y'

Hence
d -1 ' . .
= (YA "(x,y)'] = 2B )x' + 2P,y = 0
implies
-1

! = o 1

(A.2) X Pl le
d2 -1
Note that o—— [(x,3)A "(x,y)'] = 2P| which, by virtue of A being positive

definite, has positive eigenvalues and therefore ensures that (A.2) yields a minimum.

The minimum value is

- 1 -1 1
(A.3) X(P3 P2P1 Pz)x

which gives the final result since P3 - Pé il ) = A;l; see Anderson (1958) p. 42,

for example.
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